Changes in Precipitation and Drought Patterns

Posted on at


Changes in Precipitation and Drought Patterns
Projections of changes in total annual precipitation indicate that increases are likely in the tropics and at high latitudes, while decreases are likely in the sub-tropics, especially along its poleward edge. Thus, latitudinal variation is likely to affect the distribution of water resources. In general, there has been a decrease in precipitation between 10°S and 30°N since the 1980s (IPCC 2007). With the population of these sub-tropical regions increasing, water resources are likely to become more stressed in these areas, especially as climate change intensifies.

While some areas will likely experience a decrease in precipitation, others (such as the tropics and high latitudes) are expected to see increasing amounts of precipitation. More precipitation will increase a region's susceptibility to a variety of factors, including:
• Flooding
• Rate of soil erosion
• Mass movement of land
• Soil moisture availability
These factors are likely to affect key economic components of the GDP such as agricultural productivity, land values, and an area's habitability (IPCC 2007). In addition, warming accelerates the rate of surface drying, leaving less water moving in near-surface layers of soil. Less soil moisture leads to reduced downward movement of water and so less replenishment of groundwater supplies (Nearing et al 2005). In locations where both precipitation and soil moisture decrease, land surface drying is magnified, and areas are left increasingly susceptible to reduced water supplies.
Although projecting how changed precipitation patterns will affect runoff is not yet a precise science, historical discharge records indicate it is likely that for each 1°C rise in temperature, global runoff will increase by 4%. Applying this projection to changes in evapotranspiration and precipitation leads to the conclusion that global runoff is likely to increase 7.8% globally by the end of the century (Oki and Kanae 2006). Thus, a region that experiences higher annual precipitation and more runoff increases the likelihood for flooding.
Furthermore, in areas that are already vulnerable due to their limited groundwater storage availability, this cycle intensifies with increased warming and diminishing water supplies. In water stressed regions, variability of precipitation patterns is likely to further reduce groundwater recharge ability. Water availability is likely to be further exacerbated by poor management, elevated water tables, overuse from increasing populations, and an increase in water demand primarily from increased agricultural production (IPCC 2007).
A recent global analysis of variations in the Palmer Drought Severity Index (PDSI) indicated that the area of land characterized as very dry has more than doubled since the 1970s, while the area of land characterized as very wet has slightly declined during the same time period. In certain susceptible regions, increased temperatures have already resulted in diminished water availability. Precipitations in both western Africa and southern Asia have decreased by 7.5% between 1900 and 2005 (Dai et al 2004).
Most of the major deserts in the world including the Namib, Kalahari, Australian, Thar, Arabian, Patagonian and North Saharan are likely to experience decreased amounts of precipitation and runoff with increased warming. In addition, both semiarid and arid areas are expected to experience a decrease and seasonal shift in flow patterns. If increased temperatures cause an intensification of the water cycle there will be more extreme variations in weather events, as droughts will become prolonged and floods will increase in force (Huntington 2005).



About the author

160